RPM Calculation Formula:
From: | To: |
RPM (Revolutions Per Minute) calculation converts linear speed (m/s) to rotational speed based on the radius of rotation. This is essential in mechanical engineering, automotive applications, and various industrial processes.
The calculator uses the RPM formula:
Where:
Explanation: The formula converts linear velocity to rotational speed by considering the circumference of the circular path and converting time units from seconds to minutes.
Details: Accurate RPM calculation is crucial for designing mechanical systems, determining motor speeds, optimizing performance in automotive applications, and ensuring proper operation of rotating machinery.
Tips: Enter velocity in meters per second and radius in meters. Both values must be positive numbers greater than zero for accurate calculation.
Q1: Why is the radius measurement important?
A: The radius determines the circumference of rotation, which directly affects how many revolutions are needed to achieve a specific linear speed.
Q2: Can this calculator be used for any rotating object?
A: Yes, the formula applies to any object moving in a circular path, from wheels and gears to turbines and fans.
Q3: What if I have diameter instead of radius?
A: Simply divide the diameter by 2 to get the radius before using the calculator.
Q4: How accurate is this calculation?
A: The calculation is mathematically precise based on the inputs, assuming perfect circular motion without slip.
Q5: Can I convert RPM back to m/s?
A: Yes, the reverse calculation is: m/s = (RPM × 2 × π × r) / 60